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Reviwe of RKHS

For centred Gaussian Process X, t € T, Define F:= span{X;: t€ T} C L?(Q,%,P)
Definition 2.6.1(RKHS of GP) The reproducing kernel Hilbert space of a centered

Gaussian process is
H = completion({E(hX) : h € F})

Definition 2.6.4(RKHS of B-valued random variable) Let B be a separable Banach
space, and let X be a B-valued centered random variable. Define

F={f(X):fe B*} C L2(Q,%,P) and F is its completion. The reproducing kernel
hilbert space of X is

H={EhX:he F} CB
with inner product (E(h1X),E(h2X))y := Eh1ha
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> Isoperimetric inequality
» Equivalence and Singularity

» Small ball estimation



Isoperimetric

Theorem 2.6.12 Let Oy be the unit ball centerd at zero of the RKHS H of X, where
X is a centered Gaussian B-valued random variable, B a separable Banach space. Let

1 be the probability law of X. Then, for every set A € Bg and every € > 0,

H(A+ cOR) < B(@1(u(A)) + ©)



Equivalance and Singularity

Theorem 2.6.13 (Cameron-Martin formula) Let B ba a separable Banach space, let
ube a centered Gaussian Borel meaure on B, Let H be its RKHS and let h € H. Then
the probability measure T,u defined as 7pu(A) = u(A — h), is absolutely continuous
with repect to u, and

D (x) = (@™ he)—[IhlIZ/2

Moreover, if v € H, then 7, and p are mutually singular.

Remark 2.6.14 7,1 and p are mutually absolutely continuous for any h € H



Equivalance and Singularity

Corollary 2.6.17 Let ;1 be a centered Gaussian measure on a separable Banach space

B, and let H be its RKHS. Then the support of p is H, the closure in B of H



The probability of small ball

Corollary 2.6.18 Let C C B be a symmetric Borel set, where B is a separable Banach
space, and let X be a centered Gaussian B-valued random variable. Then, for every
heH,

P(X—he C) > e IME/2P(X € C)



The probability of small ball

Given a centered Gaussian B-valued random variable X with law p, define its
concentration function ¢x(e) = ""'fheH,thnge[%HhH?./ — logP(||X]] < €)]

Proposition 2.6.19 Let X be a centered Gaussian B-valued random variable, where B is
a separable Banach space. Let x € supp(£(X)) = H(See Cor 2.6.17) and € > 0. Then,

Px(€) < —logP(||X — || <€) < ¢x(35)
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Review : Brownian motion

Brownian motion on [0, 1] is a centered sample continuous Gaussian process W whose
covariance is EWsW; = s A t. It can be thought as a B-valued random variable where

B=C([0, 1]) endowed with sup norm

> The sample paths of W are all in C*([0, 1]), the space of Hélder continuous of
order o on all 0 < a < 1/2. (Exercise 2.3.2)



Released Process

> Let (lo+f)(t) fo f(x)dx denote the pr|m|r|ve of f which is zero at zero for any
continuous function f on [0,1], and let ( fo JA 1f(s ds

> '8+W W(0+VV) fo Ik IVV)(S

> /5, W are almost all in Ck+2([0,1])

> Released Process Define WX(t) = >i=o kbigi/jt + (I, W)(t),t € [0,1], k> 0

where g; are i.i.d standard normal variables idependent of W



RKHS of Wk

Proposition 2.6.24 For k > 0, the RKHS of WX as a C(]0, 1])-valued random variable is

Hw,x = {f: [0,1] — R : fisktimesdifferentiable, ) jsabs.cont.andf(k*1) ¢ 12(]0,1])}
with inner product (f, g)n,, = >-;_0 kf9 (0)gY) (0) + fol k1) (5) glk+1) (s)ds



Theorem 2.6.26 Let W be Brownian motion on [0,1] Then, there exists C € (0, c0)
such that, forall 0 < e <1,

—Ce™2 < logP{suprc(o,1)|W(t)| < ¢} < —ge?

That is, the exact order of small ball concentration function qﬁg‘/ of Brownian motion is

W= 0(e72) as e > 0.



Theorem 2.6.29 If there is v > 0 such that, for C; < oo and 7; > 0,
po(e) < Cre™7,0<e< T
and if
logN(H1,e) < Coe™*,0< e< 72
for some 0 < v < 2, then there exists C3 < oo such that for every 0 < ¢ < 73,

¢0(6) < C3672a/(27o¢)'
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